Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 648-658, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646752

ABSTRACT

Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing'an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.


Subject(s)
Carbon , Environmental Monitoring , Forests , Permafrost , Rivers , China , Rivers/chemistry , Carbon/analysis , Carbon Cycle , Rain/chemistry , Ecosystem
2.
BMC Nephrol ; 23(1): 185, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568810

ABSTRACT

OBJECTIVE: To explore the technical specifications and clinical outcomes of thrombosed aneurysmal haemodialysis arteriovenous fistula (AVF) treated with ultrasound-guided percutaneous transluminal angioplasty combined with minimal aneurysmotomy. METHODS: This case series study included 11 patients who had thrombosed aneurysmal AVF and underwent salvage procedures over a 13-month period. All procedures were performed under duplex guidance. Minimal aneurysmotomy was performed, along with manual thrombectomy and thrombolytic agent infusion, followed by angioplasty to macerate the thrombus and sufficiently dilate potential stenoses. A successful procedure was defined as immediate restoration of flow through the AVF. RESULTS: The 11 patients (four males and seven females) had a mean age of 49.6 years ± 11.9 years. Six patients (54.5%) had two or more aneurysms. The mean aneurysm maximal diameter was 21.5 mm (standard deviation: ± 5.0 mm), and the mean thrombus length was 12.9 cm (8-22 cm). Ten (83.3%) of the 12 procedures were technically successful. The mean duration of operation was 150.9 minutes (standard deviation: ± 34.2 minutes), and mean postoperative AVF blood flow was 728.6 ml/min (standard deviation: ± 53.7 mi/min). The resumption of hemodialysis was successful in all 11 cases, with a clinical success rate of 100%. The primary patency rates were 90.0% and 75.0% at three and four months over a mean follow-up time of 6.3 months (3-12 months). The secondary patency rates were 90.4% at three and four months. CONCLUSION: A hybrid approach combining ultrasound-guided percutaneous transluminal angioplasty and minimal aneurysmotomy might be a safe and effective method for thrombosed aneurysmal AVF salvage.


Subject(s)
Aneurysm , Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Thrombosis , Aneurysm/complications , Aneurysm/diagnostic imaging , Aneurysm/surgery , Arteriovenous Shunt, Surgical/adverse effects , Female , Humans , Male , Middle Aged , Renal Dialysis , Retrospective Studies , Thrombosis/diagnostic imaging , Thrombosis/etiology , Thrombosis/surgery , Treatment Outcome , Vascular Patency
3.
Front Microbiol ; 10: 1115, 2019.
Article in English | MEDLINE | ID: mdl-31178837

ABSTRACT

The levels of unsaturated fatty acids (UFAs) in grape must significantly influence yeast metabolism and the production of aroma compounds. In this work, cDNA microarray technology was applied to analyze the transcriptional discrepancies of wine yeast (commercial wine yeast Lalvin EC1118) fermenting in synthetic grape must supplemented with different concentrations of a mixture of UFAs (including linoleic acid, oleic acid, and α-linolenic acid). The results showed that the initial addition of a high level of UFAs can significantly enrich the intracellular UFAs when compared to a low addition of UFAs and further increase the cell population and most volatiles, including higher alcohols and esters, except for several fatty acids. Microarray analyses identified that 63 genes were upregulated, and 91 genes were downregulated during the different fermentation stages. The up-regulated genes were involved in yeast growth and proliferation, stress responses and amino acid transportation, while the repressed genes were associated with lipid and sterol biosynthesis, amino acid metabolism, TCA cycle regulation, mitochondrial respiration, and stress responses. Unexpectedly, the genes directly related to the biosynthesis of volatile compounds did not vary substantially between the fermentations with the high and low UFA additions. The beneficial aromatic function of the UFAs was ascribed to the increased biomass and amino acid transportation, considering that the incorporation of the additional UFAs in yeast cells maintains high membrane fluidity and increases the ability of the cells to resist deleterious conditions. Our results highlighted the importance of UFAs in the regulation of aroma biosynthesis during wine fermentation and suggested that the improvement of the resistance of yeast to extreme stresses during alcoholic fermentation is essential to effectively modulate and improve the production of aroma compounds. A potential way to achieve this goal could be the rational increase of the UFA contents in grape must.

4.
Food Chem ; 181: 198-206, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25794740

ABSTRACT

C6 and C9 volatiles, originated from fatty acids, are important volatiles for 'Cabernet Sauvignon' grapes and wines. This study evaluated the influence of different training systems including Modified Vertical Shoot Positioned, (M-VSP); Fan training system with two trunks (F-TT); Fan training system with multiple trunks (F-MT) on these volatiles and the long-chain fatty acids (>C12) of grape berries and wines in the northwest of China. The expression profiles of genes from associated metabolic pathway were also analyzed. F-MT training resulted in lower vine vigor, larger yield, higher content of unsaturated fatty acids in grapes and lower C6 esters in wines in comparison with M-VSP and F-TT. M-VSP and F-TT enhanced C6 volatiles in grape berries. The concentrations of C6 volatiles were positively correlated with the expression of VvLOXA and VvHPL1. The results expanded the knowledge of the influence of training systems on fatty acids and their derived volatiles of grapes and wines.


Subject(s)
Fatty Acids/metabolism , Vitis/chemistry , Volatile Organic Compounds/chemistry , Wine/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL
...